WP_List_Table tutorial

These days, while | was writing a plugin and doing some research, | noticed
that there are no updated and comprehensive tutorials for the WP_List_Table

class on WordPress.

Since | had to study the class to make the plugin, | thought | would come up

with a tutorial for WP List Table in order to explain it better.

By following this tutorial you will learn how to create a custom table in the
WordPress database, insert data into it, and take this data to show it in the

WordPress admin area.

You will get a result like this:

:
SupportHost Admin Table

Bulk actions || Apply 7 ftams 1 |ot3] s w

ke
¥ SupportHost List Edit | Dedete
Table

O Collapse meny

The final result

| have uploaded the full code of the plugin to GitHub to make it easier to read

this tutorial, you'll find the link at the end of this post.

Talhla Aaf mMantAanE~

August'19, 'Zf)lZ?/ Hjhliafeglln! wgrgalb}e?s fr(:)?n Ivan Messina

23 Comments

In this tutorial | want to explain how to use the WP List Table class, but first let’s

see what it is used for.

What is the WP_List_Table

class?

The WP List Table class is used to display a table of contents such as a list of

our articles:

Posts [Addnew |

All(1) | Published (1)

Bulk actions -=:-o|-..-| Alldates ~ || All Categories ~ || Filter

Title Author

Hello werld!

Title Author

Bulk actions ~ || Apply

As well as the list of pages:

Pages | Addew

ANl (2) | Published (1) | Draft (1)

Bulk actions w | | Apply Alldates || Fileer

Title

Privacy Policy — Draft, Privacy Policy Page
Sample Page

Title

Bulk actions w | [Apply

Categories

Uncategarized

Categories

Tags

Tags

Author

admin

admin

Author

reen Options ¥ Help *

L] D
n Published
2022/07/31 at 6:35 pm
L Date
1 item
Screen Options. ™ Help ¥
| Search Pages |
2 items
L] Date
- Last Modified
2022/07/31 at 6:35 pm
Publishad
2022/07/3 at 835 pm
[] Date
2 item:

This class allows us to display a list of content, complete with the pagination,

screen options, search, bulk actions, sorting and more.

Normally, if we create a custom post type, this page is automatically created by
WordPress, but how can we show administrators a page with a list taken from a

custom database table?

We can find the WP_List_Table class inside the file /wp-admin/includes/class-

wp-list-table.php

Preparing the development
environment

Let’s go and create our table.

Enter the database using a software such as phpMyAdmin, adminer (the

default software if we're to use local) or Sequel Ace to run this query:

CREATE TABLE “wp_ supporthost custom table’ (

"ID’ bigint (20) NOT NULL AUTO INCREMENT PRIMARY KEY,
‘name text NOT NULL,

‘description” longtext NOT NULL,

‘status® varchar (20) NOT NULL,

‘order” int NOT NULL

Now that we have created our custom table let’s go insert some data into it

with this query:

INSERT INTO "wp supporthost custom table® ('name’, “description’, " status’,

“order)

VALUES

("joe', 'description', 'active', '1'"),

'description', 'active',

'description', 'pending',

'description', 'active',
'description’', 'pending',

'description', 'active',

'description’', 'pending',

At this point we have our custom table in the database, and we have data in it.

Remember that in both queries you need to change “wp_" to the prefix of your
tables in the database.

The structure of WP List Table

In this article, WP List Table tutorial, we are going to create a PHP class that
would extend the WP List Table.

Let's see what items we can control with the WP_List_Table class:

3 seal
& Users 5 > = s =
Bulk actions v Apply 6 4 7 items of3| »
Name
g

Description Status

Description Status

1. Ability to hide columns from screen options;

2. Ability to decide the number of items per page from the screen options;
3. Search form;

4. Pagination;

5. Custom columns;

6. One-click column sorting;

7. Customized bulk actions.

Set up the plugin

The code we will write in this tutorial for WP List Table can be inserted into

your site in several ways.

You can put it inside your theme’s functions.php file, but it is not a good option

for several reasons:

e If you change themes you lose this functionality;

e You risk having a functions.php file that is too large (with too much code)

and it would become difficult to maintain.

Ideally, we should always try to separate it out for simplicity; it will come in

handy in the future when we want to add a feature or make a change.

A second option is to use a plugin like code snippets which allows us to add

custom code to our site without creating a special plugin.

In this article, WP_List_Table tutorial, | will follow the third option, that is, | am

going to create a plugin to add this functionality to WordPress.

Create the plugin

We can start writing our WordPress plugin. Let’'s go to the /wp-

content/plugins folder and create the file supporthost-admin-table.php (of

course you can use any name you like).

Inside our new php file, we add this code:

<?php

/*
Plugin Name: SupportHost Admin Table

Description: It displays a table with custom data
Author: SupportHost

Author URI: https://supporthost.com/

License: GPLv2 or later

License URI: https://www.gnu.org/licenses/gpl-2.0.html
Text Domain: supporthost-admin-table

Version: 1.0

*/

// Loading WP List Table class file
// We need to load it as it's not automatically loaded by WordPress
if (!class exists('WP _List Table')) ({
require once (ABSPATH . 'wp-admin/includes/class-wp-list-table.php');

// Extending class
class Supporthost List Table extends WP List Table
{

// Here we will add our code

// Adding menu
function my add menu items ()
{
add menu page ('SupportHost List Table', 'SupportHost List Table',
'activate plugins', 'supporthost list table', 'supporthost list init');

// Plugin menu callback function
function supporthost list init ()
{

// Creating an instance

Stable = new Supporthost List Table();

echo '<div class="wrap"><h2>SupportHost List Table</h2>"';
// Prepare table

Stable->prepare items () ;

// Display table

Stable->display () ;

echo '</div>"';

Then, from the WordPress admin area we activate the plugin we just created:

SCrean Upnons v Heip v
Plugins | Addnew
Al (1) | Inactive (1) | Auto-updstes Disabled (1) Search installed plugins...

Bulk actions ~ || Apply 1 item
Plugin Description Automatic Updates
SupportHost Admin Table It displays a table with custom data

Vorsion 10| By Supportort
Plugin Description Automatic Updates
Bulk actions w Apply 1 item

Once our plugin is active and we can see a new entry in the administrator

menu:

-

Users
* Tools

Settings

SupportHost List
Table

Collapse menu

Obviously if we click on the link we get an error since we don’t have any code in

our Supporthost_List_Table class yet.

Create the header of our table.

The first method we are going to add to our class will be get_columns() which

allows us to create the columns in our table.

We then add the method in this way:

// Extending class
class Supporthost List Table extends WP List Table
{

// Here we will add our code

// Define table columns
function get columns ()
{
Scolumns = array (
'cb'! => '<input type="checkbox" />',
'name'’' => ('Name', 'supporthost-cookie-consent'),
'description'’ => ('Description', 'supporthost-

cookie-consent'),

'status'’ ___('status', 'supporthost-cookie-consent'),

'order' => ('Order', 'supporthost-cookie-consent')
)i

return Scolumns;

Basically all we are doing is returning an associative array, where each element

is a column.
Remember that we call the first column “cb” which stands for checkbox.

Also note that | use WordPress’ native () function for column names so that |

can translate text strings into other languages in the future.

At this point if we visit our plugin page we can see the same error:

SupportHost List Table

function WP_List_Table::prepare_items() must be overridden in a subclass.

Let’s see how to fix it.

Connect table to data and columns

We see the error above because we have to define a prepare_items() method in

our subclass in order to get it to function.

We then add the method within our class:

// Bind table with columns, data and all
function prepare items ()
{
$columns = Sthis->get columns();
Shidden = array();

Ssortable = array();

$this-> column headers = array(Scolumns, S$hidden, S$sortable);

Sthis->items

We then reload the page and we can see our table, obviously without any data

in it.

Take data from the database

Now we need to pass an array to the prepare_items() method, at the moment

we are passing an empty array where it shows:

Sthis->items = [];

We add a method to our class to take data from the database and pass it to
$this>items.

We can insert this method:

// Get table data
private function get table data() {
global Swpdb;

Stable = Swpdb->prefix . 'supporthost custom table';

return Swpdb->get results (
"SELECT * from {$table}",
ARRAY A

) ;

All we need to do is take all the data from our custom table and return it in an

array.

We can modify the prepare_items() method like this:

// Bind table with columns, data and all
function prepare items ()
{

//data

Sthis->table data = Sthis->get table data();

$columns = $this->get columns();

Shidden = array();

array

Sprimary = 'name';

Sthis-> column headers = array(Scolumns, Shidden, Ssortable,

Sprimary) ;

Sthis->items = Sthis->table data;

Note that we put our result array in a property called table_data, we will need it

later. To make it work we need to define the property in our class like this:

// define Stable data property
private Stable data;

We are almost close to our final result, but there is still a bit more to go.

Show the data in the table

The reason we still do not see the results, despite the fact that we are getting
them from the database, is that we have not defined the column_default()

method within our class.

This way, we can define which value goes to each column on our table.

function column default ($item, $Scolumn name)
{
switch ($column name) {
case 'id':
case 'name':
case 'description':
case 'status':
case 'order':

default:

return Sitem[$column name];

Now we can see the table, but the checkboxes in the first column are missing:

SupportHost List Table

MName Description Status Qrder

description active

description pending

Name Description Status Ordar

To fix it we need to add a new method to our class like this:

function column cb (Sitem)
{
return sprintf (

'<input type="checkbox" name="element[]" value="%s" />',

Sitem['id']

This checkbox will come in handy later when we need to create bulk actions to

our table.

We now find ourselves with a usable, albeit minimal, table. From this point let’s
see how to add features to our table using the WP_List_Table class so that it is

usable.

In the next paragraphs, we'll see how to add pagination, search, screen

options, bulk actions, and more.

l-‘llﬂlilnf\nl-=IV\|‘\l

UIVTI Y

By working with the WordPress admin area you probably noticed that some

columns are blue and have an arrow.

By clicking on the link you can sort the results by that criteria.

Author i

Privacy Policy — Draft, Privacy Policy Page admir - Last

Sample Page admir -

At B

Let’s see how we can do this for our table.

We add a method to our class:

protected function get sortable columns ()
{
Ssortable columns = array(
'name' => array('name', false),
'status' => array('status', false),
'order' => array('order', true)

) 8

return S$sortable columns;

We use this method to create an array of columns that we can use to sort our

data.

If a column is not in this array, you will not be able to sort it. In this WP List

Table tutorial | intentionally left out the description.
The index of our array indicates the column we want to set as a “sortable”.

The value of our array, on the other hand, is an array where the first value is the

column we will use to sort the data, and the second value is a boolean that

winrle liba thice:

VVUI NO 1INT L1110,

e |f it is set to false (which is the default), as soon as we click on the column
name the arrow will point upward and the values will be sorted in

ascending order;

e |f it is set to true, as soon as we click on the column name the arrow will

point downward and the values will be sorted in descending order.

Remember that the second parameter (true/false) is optional and is set to false

by default.
The sorting is not working since we are still missing two steps.

As a first step, we add another method that will allow us to change the sorting

of the array that contains all the data in our table.

// Sorting function
function usort reorder ($a, $Db)

{

// If no sort, default to user login

Sorderby = (!empty (S GET['orderby'])) ? $ GET['orderby']

'user login';

// If no order, default to asc
Sorder = (l!empty($ GET['order'])) ? $ GET['order'] : 'asc';

// Determine sort order

Sresult = strcmp ($al[Sorderby], Sb[Sorderbyl]) ;

// Send final sort direction to usort

return (Sorder === 'asc') ? Sresult : -Sresult;

Now that we have added these two methods all we need to do is modify the

prepared items code to make our columns in a manner that can be sorted.

Firstly, we have to edit the line:

Ssortable = array();

Ssortable = S$this->get sortable columns () ;

So that we can pass our array correctly to _column_headers two rows down.

We then add this line to reorder our array when necessary:

usort (Sthis->table data, array(&Sthis, 'usort reorder'));

Our method then becomes the following:

// Bind table with columns, data and all
function prepare items ()
{
//data
Sthis->table data = Sthis->get table data();

Scolumns = S$this->get columns();

Shidden = array();

$sortable = Sthis->get sortable columns () ;

Sprimary = 'name';

Sthis-> column headers = array(Scolumns, S$hidden, $sortable,

Sprimary) ;

usort (Sthis->table data, array(&Sthis, 'usort reorder'));

Sthis->items

Sthis->table data;

Now that we are able to sort the data in our table, let’s move on to a new

feature: pagination.

Add pagination to
WP_List_Table

If we have a substantial number of elements pagination is a must.

The WP List Table class allows us to display a pagination in a simple way, let’s

see how.
Adding pagination is a piece of cake!

All we have to do is insert a few lines of code in our prepare_items() method.

/* pagination */
Sper page = 3;

Scurrent page = Sthis->get pagenum() ;

Stotal items = count ($this->table data);

Sthis->table data = array slice($this->table data, ((Scurrent page -
1) * Sper page), Sper page);

Sthis->set pagination args (array (
'total items' => Stotal items, // total number of items
'per page' => Sper page, // items to show on a page
'total pages' => ceil($total items / S$Sper page) // use
ceil to round up

Y):

Which becomes:

// Bind table with columns, data and all
function prepare items ()
{

//data

Sthis->table data = Sthis->get table data();

$columns = S$this->get columns();
Shidden = array();
Ssortable $this->get sortable columns();

Sprimary = 'name';

Sthis-> column headers = array(Scolumns, Shidden, Ssortable,

usort ($this->table data, array(&S$this, 'usort reorder'));

/* pagination */

Sper page = 3;

Scurrent page = Sthis->get pagenum() ;
Stotal items = count (Sthis->table data);

Sthis->table data = array slice($this->table data, ((Scurrent page -

1) * Sper page), S$per page);

Sthis->set pagination args(array(
"total items' => Stotal items, // total number of items
'per page' => Sper page, // items to show on a page
'total pages' => ceil(Stotal items / Sper page) // use
ceil to round up

Y)

Sthis->items = Sthis->table data;

Note carefully: the lines of code for pagination must be inserted after the
function for sorting. If the sort is inserted after the array_slice function, when
we sort a column the results will be sorted only for that page, the sort will not

consider all the results, but only those on the screen we see.

To better understand this, | suggest you move the line beginning with usort

after the code for pagination and sort by the order field to see what happens.

Note where it says the following:

Sper page = 3;

This means that we show 3 items per page.

With these few lines we can insert pagination into our table and get a result like
this:

SupportHost List Table

Name Description Status Order

description active 1

john description pending

Nama Description Status Order

7 items 1of3 >| ® |

As you may have noticed, if you enter the page number in the box manually and

hit enter nothing happens. This is because our table is not a form.

To solve this we need to modify the code of our function this way:

// Plugin menu callback function
function supporthost list init ()
{

// Creating an instance

Stable = new Supporthost List Table();

echo '<div class="wrap"><h2>SupportHost Admin Table</h2>';
echo '<form method="post">';

// Prepare table

Stable->prepare items () ;

// Display table
Stable->display () ;

echo '</div></form>';

In WordPress | normally can click on the screen options at the top and decide

which columns to show and how many results to show.

That is exactly what we are going to see.

Screen options

To add screen options we do not have to add a method to our class, instead we

will have to modify the code on our “admin_menu” hook.

We have to delete the initial code and replace it with the following:

// Adding menu

function my add menu items () {
global Ssupporthost sample page;

// add settings page
Ssupporthost sample page = add menu page(('SupportHost List
Table', 'supporthost-admin-table'), ('SupportHost List Table',

'supporthost-admin-table'), 'manage options', 'supporthost list table'’,

'supporthost list init');

add action("load-S$supporthost sample page",
"supporthost sample screen options");

}

add action('admin menu', 'my add menu items');

// add screen options

function supporthost sample screen options() {

global Ssupporthost sample page;
global $table;

Sscreen = get current screen();
// get out of here if we are not on our settings page
if(!is _object ($screen) || Sscreen->id != Ssupporthost sample page)

return;

array (

'label' => ('Elements per page', 'supporthost-admin-
'default' => 2,
'option' => 'elements per page'

) ;

add screen option('per page', S$Sargs);

Stable = new Supporthost List Table();

In the first function, we add a hook to load screen options.

In the second function we set $table as a global variable, this way WordPress
takes the list of columns and allows us to decide which columns to show or

hide from the screen options.

We also add an option called elements_per_page that allows us to decide how

many elements to display per page.

If you have tried surely you have noticed that if you change the number of

elements per page, they do not change.

In fact, we have to go and modify a line in our prepare_items() method:

$per page

Becomes:

Sper page Sthis->get items per page('elements per page', 10);

In this way, we tell WordPress to take the value ‘elements_per_page’ from the
usermeta table, in fact when we change the number of elements per page,
WordPress saves the value in the database. It's the same thing with selecting

the columns we want to show or hide.

The value 10 we pass as the second parameter is the default number, if the
user has not decided how many elements to show from the screen options.

This value is optional, if we do not specify it WordPress sets it to 20 by default.

You may have also noticed that if you hide a column and reload the page, all

columns are shown.

As in the case of the number of items per page, preferences related to hidden

columns are saved in the database in the usermeta column.

Let’s edit the line:

Shidden = array();

With this if/else statement:

Shidden = (is array(get user meta(get current user id(),
'managetoplevel page supporthost list tablecolumnshidden', true))) ?

get user meta(get current user id(),

'managetoplevel page supporthost list tablecolumnshidden', true) : array();

This way if the user has decided to hide some columns we hide them,

otherwise we pass an empty array without hiding any columns.

At this point we want to be able to search the items we have in the database.

The search form

In order to search through the various elements we need a search form, and

some modifications to our code to allow a search within the database.

Firstly, we need to add the form to our table, by adding this row:

Stable->search box('search', 'search id');

In this way:

// Plugin menu callback function
function supporthost list init ()
{

// Creating an instance

Stable = new Supporthost List Table();

echo '<form method="post">"';

// Prepare table

Stable->prepare items();

// Search form

Stable->search box('search', 'search id');
// Display table

Stable->display () ;

echo '</div></form>"';

Now we are going to modify our prepare_items() method to take the

$_POSTI['s'] parameter and do a database lookup, like this:

//data
if (isset($ POST['s'])) {

Sthis->table data $this->get table data($ POST['s']):
} else {

Sthis->table data Sthis->get table data();

So the complete method becomes:

// Bind table with columns, data and all
function prepare items ()
{
//data
if (isset($ POST['s'])) {
$this->table data = Sthis->get table data($ _POST['s']);
} else {

Sthis->table data Sthis->get table data();

$columns = $this->get columns();

Shidden = (is array(get user meta(get current user id(),
'managetoplevel page supporthost list tablecolumnshidden', true))) ?
get user meta(get current user id(),
'managetoplevel page supporthost list tablecolumnshidden', true) : array();

$sortable = Sthis->get sortable columns () ;

Sprimary = 'name';

$this-> column headers = array(Scolumns, S$hidden, S$sortable,

Sprimary) ;

usort ($this->table data, array(&Sthis, 'usort reorder'));

/* pagination */
Sper page = S$this->get items per page ('elements per page', 10);

Scurrent page = Sthis->get pagenum() ;

Stotal items = count ($this->table data);

Sthis->table data = array slice($this->table data, ((Scurrent page -
1) * Sper page), S$per page);

Sthis->set pagination args(array (
'total items' => Stotal items, // total number of items
'per page' => Sper page, // items to show on a page
'total pages' => ceil($total items / $per page) // use
ceil to round up

)):

Sthis->items = Sthis->table data;

We must then modify the get_table_data() method so that it performs a

database search:

// Get table data
private function get table data($search = '') {

global Swpdb;
Stable = Swpdb->prefix . 'supporthost custom table';

if (!empty($search)) {
return Swpdb->get results(
"SELECT * from {S$Stable} WHERE name Like '%{S$search}%' OR
description Like '${S$search}%' OR status Like '%${Ssearch}%'",
ARRAY A
) ;
} else {
return Swpdb->get results (
"SELECT * from {$table}",
ARRAY A
) ;

Looking in the “name,” “description,” and “status” fields, you'll see that the

search works.

Action links

You know when you hover your mouse over a line and links appear that allow
you to perform various actions, such as viewing the post/page or moving to the

trash?

Let’s see how to use the WP List Table class to add these action links.

Sereen Options ¥ Halp *
Pages Add Mew
All{Z) | Published (1) | Draft (1) Search Pages
Bulk actions Apply All dates Filter Zitems
Title Author »
Privacy Policy — Draft, Privacy Policy Page admin
| Eclit| Quick Edit | Trash | Preview |
Sample Page
Title Author L]
Bulk actions Apply 2 items

Simply by adding this method to our class we can add action links:

// Adding action links to column
function column name ($item)
{
Sactions = array(
'edit' => sprintf ('<a href="?

page=%s&action=%s&element=%s">"' . ('"Edit', 'supporthost-admin-table')

'', $ REQUEST['page'], 'edit', Sitem['ID']),

'delete' => sprintf ('<a href="?
page=%s&action=%s&element=%s">' . ('Delete', 'supporthost-admin-table')

'', $ REQUEST['page'], 'delete', Sitem['ID']),
) 5

return sprintf ('%1$s %2S$s', Sitem['name'], Sthis-

>row actions (Sactions));

The function name must be created in this format:

column_{column_identifier}.

Within this function, we create an array of links, in this case one link for editing

and one for deleting the element.

Sitem['ID'] and Sitem[‘'name’], ID and “name” are the identifiers of our columns

as we defined them in the get_columns() method.

In this way, we only add links to the action. If you want these links to work

properly, you have to create the actions.

We are almost done, we only need the bulk actions, let’s see how to do it.

Add bulk actions

Bulk actions are those actions that we can apply to several items after

selecting them:

Pages | Add New

All (2) | Published (1) | Draft (1)

v Bulk actions ‘&', E
Edit
Move to Trash

() Privacy Policy — Draft, Pri

] Sample Page

To add these actions all we have to do is add a method to our class:

// To show bulk action dropdown
function get bulk actions()
{

Sactions = array(

'delete all' => ('Delete', 'supporthost-admin-

'draft all' => ('Move to Draft', 'supporthost-admin-

) ;

return Sactions;

We basically come back to an array with the actions. The index of the array is

the action while the value of the array is the name we see in the dropdown.
Again, | used the __() function so that | could then translate these strings.

As with action links, here we have added only the action, we have not created
the function to execute the action we are going to select, in fact if we select

one of these actions nothing will happen.

Conclusion

In this article, WP_List_Table tutorial, we saw how to use the WP List Table

class to create a table in the admin area by taking data from a custom table.

To make things easy for you, I've added the file on GitHub, you can find the full

code in this tutorial here. This is the end result:

ements per page | 3
Apply
ants

» =
SupportHost Admin Table
rch
Bulk actions ~ | | Apply 7 tams 1 (ota] s || »
Description Status
M s
description active
¥ SupportHost List Edit | Dedate L
Table
mark
......
Description Status
Bulk actions + Apply 7 it 1ot 3
Wersion 6.0.1

Thank you far creating with WordPress,

This class can be used to create tables in the WordPress admin area using

already existing classes in WordPress, without having to reinvent anything.

Was the guide helpful? Were there any passages that weren’t clear? Do you

have any doubts? If so, let me know in a comments below!

